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ABSTRACT

We discuss regular approaches to the problems and definition of the  fractional derivatives and fractional integrals (simply called differ integrals),
namely the Riemann-Liouville Fractional derivative and Caputo fractional derivative and fractional integrals. We prove the basic properties of
fractional integrals and Fractional derivatives as well as some theorems of the fractional integrals and derivatives including the rules for their
compositions and the conditions for the equivalence of various definitions.

The paper focuses on find the approximate values for functions derivatives, when the function order is a negative, illustrate by a some theorems and

examples.
KEYWORDS

Mittag-Leffler functions, Gamma functions, Beta functions and their properties are briefly discussed.

INTRODUCTION TO FRACTIONAL CALCULUS

Fractional Calculus is important branch of mathematics. The fractional
calculus is more than 300 years old. Its generalization of ordinary
differential and integral is non-integer (Arbitrary) order. The subject is
as old as the calculus differentiation and goes to back to time when
Leibniz, Gauss, and Newton invented this kind calculation in letter to
L-hospital in 1695 Leibniz raise the following equation.

Millerand Ross, 1693 can the meaning of derivatives with integer
order to be generalized to derivatives with non-integer order?

The story goes that L hospital was somewhat curios about the equation
and replied another to Leibniz what. If the order be 4?

Leibniz in a letter dated September 30 /1695 replied. It will lead to a
paradox which one day useful consequence will be drawn the equation
raised for fractional derivatives was going a topic the last 300 years.
Several mathematicians contributed to this subject over the year people
like Lowville, Riemann and well mad major contribution to the theory of
fractional calculus. The Several mathematicians contributed to this
subject over the year people like Lowville, Riemann and well mad major
contribution to the theory of fractional calculus. story of fractional
calculus continued with contribution from Fourier, Abel, Leibniz,
Grunewald and Letnikov. Now days the fractional calculus attract many
scientist and engineers there are several application of this phenomenon
in mathematics ,physics, chemistry, control theory and so on.

The fractional calculus is a natural extension of that traditional
calculus. It is like many other mathematical branches and ideas; it has
its origin in the pursing for the extension of meaning. Well known
examples are the extension of the integer number to the rational
number of the rational numbers to the real numbers, and of the real
number numbers to the complex number. The question of extension of
meaning in differential and integral calculus: can the derivative & of
integer order,n>0, be extended to any order, n, functional, irrational or
complex? The answer of this question has led to the development of a
new theory which is called fractional calculus.

1.1 IMPORTANCE OF FRACTIONAL CALCULUS

Until recent times, it was considered that fractional calculus is
understood by only for the few selected mathematics who have
spatial calculus knowledge in this and also that it was considered that
is only mathematical theory without application, but in the last few
decades there has been an explosion of the research activities of the
application of the fractional calculus to very diverse scientific field
ranging from the physical phenomena to control system, to finance
and to economic. Virtually no area of classical analysis is left
untouched by fractional calculus, indeed at present applications and
activities related to fractional calculus have appeared in at least the
following fields: in fractional control of engineering system and
advancement of calculus of variation and optimal control to dynamic
system, in analytical and numerical tools and technique , in
fundamental exploration of mechanical electronic , and thermal
constituted relation and other properties of varies engineering
material such as viscoelastic polymers, ...

1.2 HISTORICAL DEVELOPMENT OF FRACTIONAL
CALCULUS
The concept of fraction calculus is believed to have

emerged from a question raised in the yearl695.
Marquis de L Hopital in the latter date of September
30", 1695 1 Hopital wrote to lionize asking about him
particular notation he had used in this publications for

arfx)

o of the linear function

the n — th, derivative

f(x) = x L Hospital posed the equation, that dax will
be equal to, x+v/dx: x". in this word fractional calculus
was born. Following this equation, many
mathematicians contributed to the fractional calculus in
1730, Euler mentioned interpolating between integral
orders of derivative .In 1812Laplace defined fractional
derivative by means of an integral and in 1819 there
appeared the first discussion of fractional derivative in
a calculus text written by S.F.Lacroix.
Starting with
y=xm

(1.1)
Where m is positive integer, Lacroix found thatn — th
derivative of x™

Df __ m! m—-n

Dpnx (m—n)! » M =M.

(1.2)

Then replaced n with 21 and let m =

1 thus the derivative of order ; of the function x

is

ale _ 2Vx
dx1/2x - N3
(1.3)

This result obtained by Lacroix is the same as that
yielded by the present day Riemann- Liouville
definition of the fractional derivative .But Lacroix
consider the equation of interpolating between integral
orders and of a derivative. He developed only two of

the 700 pages of this text to this topic.
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Fourier, in 1822, was the next to mention a derivative of arbitrary order. But like
Euler, Laplace, and Lacroix, he gave no application. The first use of fractional
operation was by Neil Henrik Abel in 1823. [21]Abel applied the fractional
calculus to the solution of an integral equation, which arose in his formulation
of the tautochrone problem. To find the shape of a frictionless wire lying in a
vertical plane, such that the time required for a bead placed on the wire to slide
to the lowest point of the wire is the same regardless of where the bead is first
placed.

Probably Joseph Liouville and fascinated by Laplace's and Fourier's brief
comments or Abel's solution, so he made the first major study of fractional
calculus. He published three large memoirs on this topic in 1832 beginning with
followed by more papers in rapid succession. Liouville first definition of a
derivative of arbitrary order vinvolved an infinite series. This had the
disadvantage that v must be restricted to those values for which the series
converges. Liouville seemed aware of the restrictive nature of his first definition,
therefore. Liouville tried to put his effort to define fractional derivatives again
of x~* whenever xand a are positive.

Starting with a definite integral we have:

1= [Pusle™ Uy
fo (1.4)

With the change of variables xu = t, we obtain
— y—a (®ra-1,-t
I=x"*["t* e dt

This integral closed to the Gamma integral of Euler which is define as
T(a) = f, t*le tdt

Therefore the equation (1.4) con be written in the tern of Legendre symbol T for
generalized factorial
I =xT(a)
Which implies
—a_ 1
=
By” operating “on both side of this equation with d”/dx”
that

, and by assuming

dv(e%%) _

o gV Forany v > 0, Liouville was able to obtain.

The result known as this section definition

A g (T@Y) gy
dx? T @
(L.5)

After these attempt, still the second definition of the fractional derivative is
restricted to some functions like, f(x) = x™® The (—1)" tern in this
expression suggests the need- to extend the theory to include complex numbers.
Indeed, Liouville was able to extend this definition to include complex value for
aand v. By piecing together the somewhat disjointed accomplishments of
many notable mathematicians, especially Liouville and Riemann, modern
analysts can now define the integral of arbitrary order. The fractional integral of
order v is defined as follows.

D7) = s X F O =

) ldt (1.6)

1.3SPECIAL FUNCTIONS

There are some basic mathematical functions which are important in the study
of the theory of the Fractional Calculus. In the next subsection, we will
concentrate on the Gamma function, Beta function, Mittag-leffler function...
And we, will study some well-known properties of this functions.

1.4 EULER’S GAMMA FUNCTION
One of the basic special function is Euler Gamma function .this function is tied
to fractional calculus by definition we will see later on the fraction integration.

k
Eqp(x) = Zf:om,ﬂ.ﬁ >0

And also, we can be written in the term one parameter of Mittag-Leffler function
El(x):El,l(x) =e*

PROOF: Let as using the definition of Mittag-Leffler function
I: if a=1,and ﬁ = 1then the mittafunction will come

In1729, Euler discovered function. There are several approaches leading to the
definition of gamma function. The most preferred way of defining it, is the use
of Euler’s integral
The function I': RY - R* defined by the integral

Tx)=f"e™*x"1dx ,x>0

SOME PROPERTIES OF GAMMA FUNCTION AS FOLLOW

Its relation to the factorials is that for any natural number, n, we have
'n)=m-1)!

The Gamma function satisfies the following function equation
I'(x+1) =xI'(x) xeR™*

The Gamma function satisfies the following function

rtn) = 2 € g1 gy

And also the following property is hold
1 —
r (E) =V

In 1730, Euler generalized the formula

am m_ _m xm-n

dx™ (m-n!

By using the following property
r(m+1)=m!

We obtain

am XM = r(m+1) _mqm-n

dxn T rn-n+1)

The incomplete Gamma function is more generalized form of the Gamma
function, it is given by
(v, t) = f e *x""'dx , Rev>0.

I‘(v)“’

1.5BETA FUNCTION

One of the useful mathematical functions in fractional calculus is the Beta
function. Its solution is defined through the use of multiple Gamma functions.
Also, it share form that is characteristically similar to the fractional integral or
derivative of many functions particular polynomials of the form t* . The Beta
function is defined by definite integral. The following equation demonstrates the
Beta integral and its solution in terms of the Gamma function

B(n,m) = folxm’l 1

SOME PROPERTIES OF BETA FUNCTION
Symmetric functions of Beta

B(nm)=p(m,n)
The beta function can also be defined in the terms of the Gamma function
let Re(x) > 0 and Re(y) >0

Than B(x,y) = "X = g(y,x)

r(x+y)
the beta function relation with the Beta function

_IrG+)ry) . x
Blx+1y) rlx+y+1)  x+y Bxy)

(1.8)
1.6 THE MITTAG -LEFFLER FUNCTION

Another important function of fractional calculus is the Mittag-Lellfer function
which is plays a signification role in the solution of non-integral order

—-x)"1dx  nm>0 (1.7)

where X,y €R*

differential equations. The one parameter representation of Mittag-Leffler
function is defined over the entire complex by plane

E,(x) = a > 0,xeC

Yo _xk
k=0 r(ak+1) ’

And also two parameter representation of the mittag-leffler function

k

L Eapor(0) = (B~ DEqp(O]= [y WL yer By

I(ak+B-1) T(ak+p)"
o (ak)xk (1
Z[Eapr () = (B = DEp()] = Eizors (2)-

Hence, we conclude that
S Eap (0] = = [Eapr () = (B = DEe ()] (1.11)

Property 4: If ¢ =1 and § =2 then the Mittag-Leffler function be come,
e*-1

x

F1a() = Zi “r(kﬂ)fz" °<k)|71 A +*: *
If welet x = 0 ,than
| 14 H International Journal of Scientific Research I
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Eqp(0) =1

The Mittag-Leffler function is the extension of the exponential function, solution
of the fractional order differential equations are often expressed in the term of
Mittag-Leffler functions in much the same way to solutions of many integer
order differential equations may be expressed in terms of exponential functions.
The following some

PROPERTIES OF MITTAG -LEFFLER FUNCTION

Property 1.— + x Eg 3(x) = Eop(x) , where xeC

(B)
Proof Using the definition of Mittag-Leffler function, the proof can be show
directly as below:

We will proceed the proof by using the definition of Mittag-Leffler function.

X
r(tf) +aEep(x) = r(b) +x X0 T(ak+atp)
Xk+1
r(lf) o T ¥Eap) = rw) + Xk T(ak+a+p)
If weletm=k+1,in the above sum notation, we obtain
om
W,) + XEq a5 (X) = rw) + X0t
x™ 1
l‘(ﬁ) i@ * ¥ Paasp () = 1‘(6) @ I s T
F(E) ——+ XEq a5 (X) = Eqp(x)
Property 2.e*[1+ E.f(x)]— 1= xE1y, 3/Z(x), (1.9)
Proof

by using the definition of fractional Mittag-Leffler function, we have
2 2 X _,2

Eij = €* [1 +ﬁf0 e dz]

E1j) = e’ [1+E,f(x)].

From the equation NO (2.17) it can be seen easily that

xE1/2v3/2(x) = xEl/le(x) -1= xEl/Z’(x) -1

By observing the above two equations, we may conclude that
e*[1+Ef(x)]-1= xE1, 3/Z(x),

Property3
[Ea[?(x)] =—[Eqp- 10— B - 1)Eaﬁ(x)] (1.10)

Proot
By looking at the left hand side of the equation number (1.10)

[EaB(X)] Zk 0r(uk+lf)]
E[Ea,ﬁ(x)] Zk O[r(ak+B)] dx

d ®
o [Ees®] = Zr0 m

xk

Then the right hand of the equation No (2.28) we, have

i Bap a0 = (8 = DB (0] = 5 (Bt = 6 -

1) Xk=o m]
[Ea p-1(0) = (B — DEgp(x)] = x*(ak+)

xkB-1)
Z" O M(ak+B-1)(ak+B) — Zi- oy |

(ak+B)

PROOF: Let f(t) and g(t) are tow fractional integral functions
And A is some constant than, using the definition of fractional integrals

DES W) + g = 55 [t = A ) + Ag()d y
DEIAFB) +2g()] = A = Oy + A5 [y =
) tgd

ADG[f (£) + g(©)] = ADZf(V) + ADg'g (1) 24)
2: DIf(t)=F (t) [I.e DZ=I isthe identity operator.

THEOREM 2:
D [D;” F1-D;” [Dzfv)1=D; “*Pfct) , @53)
Where, a, BeR (f(t)is continuous fort = 0

PROOF: In this subsection we will derive rules for composition of fractional
integrals. You can expect some problems due to the definition of the sequential
derivative because differences between various sequences of Riemann-Liouville
derivatives are its essence. First let us look at the composition of integrals
because they are defined in the same way in both approaches. To point out the
independence of the approach we will use the symbol D.We choose a €
R,a,f > 0,f(t) an integrable function. During the computation we use the
change of order of integration and the Beta function.

Proof Let as using the definition of Mittag'Lefﬂer function
k+1 ex_l

=y = (112)

x

k
—\ 0 x —\"o
E1,2(X)*Ek:04r(k+2\) Zk:l] k+D)!

S5:Ifa =1 and,f = 3 Than the Mittag—Lefﬂer function become

o _xF o _xF xk+2 k_1-x
E1,3(X):Zk:om2k:0 Gex2)! Zk 0 = x2 (1.13)
6: Ifa =1 and f =4 than the Mlttag—Lefﬂer function become

oo Xk s k 1 . xk+3 ex7x272
B0 T Lh0 Gy = w0y T (L149)
In general

__1 x_ym—2X°
Eym(x)= xm_,l[e D u (1.15)

Easily we can obtain the following result

2k
E1(x") X0 7 Bk (g c0sh(¥) (1.16)

x2K_sinh(x)

X
r(zk+1)

E»p(x)= Xi= "r(2k+2)7z" 0(2k+1)' x (.17)
=x)?* (=DFx

Epy (X)L Ur(;ﬂ)—zk e “—cos(x) (1.18)
(-x)2k (—Dkx?k+1  sin(x)

Epp(—x*) LR 0F(2k+2)_2k 0@kt | x (1.19)

FRACTIONAL INTEGRALS AND DERIVATIVES

2.1 FRACTIONAL INTEGRAL

There are more than one version of the fractional Integral and fractional
derivative are exist. For example, it was touched above in the introduction that
is the fractional integral be defined as follow as.

Let v be real non-integer number. Let f be piecewise continuous on j' = (0, )
and integral any finite subinterval of j = [0, o]. There are t > o, we called

(2.2) Riemann-Liouville Fractional Integral of order a .

In this section, we define the Cauchy’s formula
DY® = [ [ [ [T @ dr . dry dry = r(n 5 [ @t -
" ldr (2.1

DEFINITION OF RIEMANN -LIOUVILLE FRACTIONAL INTEGRALS
Suppose that @ > 0,t > a, t, aeR then we have

Dyf(x) —%f fOE - tdr (22)

The fractional Integration of a function to an arbitrary order «, and « is any non-

negative real number. Then the equation (2.2) is called RIEMANN-LIOUVILLE
Fractional Integral of order

Other Version of fractional integral is called WEYLE If

t — —_ \ya-1 (23)
DE f(t) = I"f(u) f_ f@OE-7tdr
2.2SOME THEOREMS OF FRACTIONAL INTEGRATION
THEOREM: 1 ADS[f(t) + g(t)] = ADFf(t) + ADgg (t),
aeR, 2eC(Linear property)
uty u+1)

r(v+u+1)
Hence we can calculate that

DEx* =x

If w=0 than the above equation will come x* = x° =1

than the equatian (8)the fractional integral of canstant "k" of order a is

Dik = x’ vu>0
l'(1+u)

-1
Inparticular form If v =% Than DTXOZ%XEZ 2 =

2.3: FRACTIONAL DERIVATIVES

We are introduce the notation of the Fractional Integrals Dg'f(x) we denoted the
Fractional Derivatives of a function f(x) to an arbitrary order v > 0 . The
Fractional Derivatives can be defined using the definitions of the Fractional
Integrals to this end, suppose thatv =n —a, Where, 0 < v < land n this
smallest integer greater than a.Than, the Fractional D of f (x) of order a

Dgf() = D"[D7"f (x)]

The fractional derivative can be defined in terms of fractional integral fractional
derivative into divided two parts
1: Suppose that « > 0, t > a,,a,t, €R. than we have

1adt ot f(D)
I‘(n 1) dt Ja (t-1)*+1i-n

Lf@,

datn

dt , n—1<a<neN
D% f(x) = @38)

a = neN
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;e (0P F(®) = %u)f (=9 (5 LG - D @) dé
(0’ ) Jie =1 = DF T f()drdg

l"(a)l'I?
Change of order of integration
Let§=z Jdr = (t —1)dz
2 (D" F(0) = s Ja F @ [ (6 = )% = )P ddr
0% (D7 £(D) = sz o (O = D571 B, )
07 (07 F(©)) = gy Jo F (@) (e = D)™*F 7 Bla Bydr = DI £ (0).

So we, just proved that fractional integrals are commutative (exactly the same
result we, have

(0 r®) =

One of the most important theorem in development of fractional calculus is the
law of exponents in

DX F(t) aeR, a,>0 2.6)

In which is very useful to calculate fractional integral and fractional derivative.
THEOREM 3: let F be continuous function on J and
let u,v > 0than forall to than , we, have
DR ID- f() = DD TF ()]
Another useful property in the study of fractional calculus is the commutative
property.
THEOREM 4:let F be continuous on j and
DID'f(H)] = D™ [DF ()] + LTt
T(v)
Thus in general

D[D™*f(B)] # D™ [Df ()]

@.7)

EXAMPLE : Let evaluate DZx" where,u > 1and a >0
Solution: According to the definition of Riemann-Liouville fractional integral
Dgf(t) = %f f@OE-0*tdr

S —peten dt

X xa 1(1__)a 14U g

Ay U=
Daix* rf(a)
au— 1

a (@0
Substitute

D&x* r(a)f x%71(1 — w)* (ux) udx

i:u then xu=t, udx=dt

DYx= mx"*“ fo (1 —w) tutdu

Using the deﬁnition of beta function

DIx* =—x"**"Bv,u+1)

l‘( )

Again using the relation between Beta and Gamma functions
1 wtaq Fw+1)r@)

DYx* =—x

r() r(a+u+1)

L f@@E-nrtde

DEf(Y) = r(n 5 @.11)

Then we have
- (HP@em
Ru =y =,

2.12)

f f(n)('r)(t — )" 1dr = ]nf(n)(t)

“Ttmdo

Now n, by using the linearity characteristic of the Riemann-Liouville fractional
derivative, we obtain

Def(t) = D* ( l‘(k+1)f )(0) + R, 1) (2.13)
DOF() = Shob 2 FOO(0) + DR,y

« _ vn-1 _Tk+1)  thke
DEf(r) = Xk "r(k a+1) T(k+1)

F90) + D (0)

DUf(t) = Yz nl.(k a+1)f(")(0)+1" FRO)
DUF(8) = B4 o FO(0) + DEF(0)
Thus mean that
DEF(E) = DF (1) = 4o s f4O0)

The proof is complete.

THEOREM 2. The Riemann-Liouville fractional derivative of the power
function satisfies.

DAt = rr+1)
r(r—-a+1)

| 16

t"™* n—1<a<n, r>-1, reR (2.14)

|—| International Journal of Scientific Research

This is named the Riemann-Liouville fractional derivative of order a.

2:
Suppose thate >0, t > a,,a,t,eR. The fractional Captuo operator has the
form

1oar it fME _
Def(x) = T @ wpen 47 o o1 <@ <neN 2.9)
ﬁf(t) a =neN

Remark: The difference between Caputo and Riemann — Liouville formulas for
the fractional derivatives leads to the following differences

A: Caputo fractional derivative of a constant equals zero, while Riemann —
Liouville fractional derivative of a constant does not equal zero

B:The non-commutation, in Caputo fractional derivative we have
DED™f(t) = DF*™f(t) # DEf(t)

Where ae(n — 1,n),neN,m = 1,2 ...

In general, the Riemann-Liouville derivative is also non-commutation as
DED™f(t) = Dg*™f(t) # DEDF f (1)

Where ae(n — 1,n),neN,m = 1,2, ...

2.4FRACTIONAL DERIVATIVE OF THE POWER FUNCTION
In order to comprehension the fractional derivative of the power function, we
review

Some theorems related to our work.

THEOREM 1
Suppose t > 0,aeR and n—1 < a@ < n,neN, than the following Riemann-
Liouville and Caputo operator hold

DEf(t) = DUf(0) = £®©0

(2.10)

F(k+1 a)

PROOF: The well-known The Taylor series exponential about the point t=0
2 3 n-1
F(O) = £ +£/(0) + 5O 51(0) + = f7(0) + Ry

n- gtk k
S O + Ry
Considering
t ot t2 tn—1

DO = [, [, [ v [y f(@dT . dTy Ty
DatP = T'(p+1) p—a

* T Ip-n+1)
PROOF of the first case
The second case

DEEP = (2.17)

When n—1<a<np<n-1,pe{-1,-2,-3,..}) The following the
design of the proof of the differential of the constant, since (t?") = 0

For p < n — 1, p, neN.so.The proof of the theorem is complete.

THEOREM 4. Let f(t) =t* whereu>1,t>0 and

Rev >0 Then the Riemann- Liouville Fractional Integral power function,
satisfy
DTf() =

PROOF 4: use the definition of the Riemann-Liouville of fractional integral of
the power function satisfies

Cu+1) Luty
T(u+u+1)

(2.18)

D) = 1 fy FO(E =) g

D) = m)f(t— OUiEndg
DO = fy (1 =$Higuag
DR =iy (1 -Hrteniag

By some substitution y = %

DUFO=S [y A=yt dy

DUF(O) = Sy (L= y)ytdy

e = T e 1t
DVf(t) = % u+v

So, the proof of the theorem is complete.
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PROOF 2:we have to use the definition of Riemann-Liouville fractional
integral

DT = Dn[D—(n—a)ta]
D" = — (t—x)"*tdx

Det" :—r(; 5 e —0re e dx

apr — a-1 _I\n-a-14r
D%t D% f x* (1 ) t" dt
Substitute i =u then xu=t, udx=dt
ayr_— 1 1 n-a-1 — n-a-1 T
DetT= l‘(u—l)f() x 1-w (ux)"udx
apr — 1 r—a (lrq _ o yv-1,u
D%t =ra”® @ —wrutdu

Using the dcﬁnition of beta function
Det"= X" Bv,u+1)

F(a 1)

Again using the relation between Beta and Gamma functions
1 r—q Fr+1)r(a-1)

apr —
D%t I(a-1) r(r-a+1) (2.15)
D¥tT= xT-a ra+1)

r(r-a+1)

Where n—1<a<n, r>-1,reR

THEOREM 3. The Caputo fractional derivative of the power function is

TP+) g _ _
petp = Pr—— n—1<a<np>n-—1peR
0 n—1<a<np>n-1pe{-1,-2,-3...} (2.16)

PROOF 3: For n—1<a<np>n-—1peR,

agp = e_ @
bt I'(n— a)fo (t-7)@-1- "dT

amp — L t Tp+1) . pon _ n-a-1
D&t T fo pem— @@P™M(t-1) dr
And using substitution T=At 0<A1<1

app — _ T+D ot p-nq _ n-a-1
D&t e —— INC L (CEPI3] tdA
Detp = —TOD___yp-a (oo (g gyn-a-ipgy

r(n-a)l(p—n+1) 0

ap = 0D pap _
DXt P~ tP*f(p—n+1,n—a
DatP = Ip+1) p—a TP+ DI (n-a)

r(n-a)r'(p-n+1) r(p-a+1)
1 11 11
DYat6 = r(s:u 61 _ 61!3 A _ 46080 U
r(6-3+1) ) 10395V

The fourth case: when p = 7and @ = %

1 13 13
plap7 = LT 13 _ 715 o o es120 2
r(7-3+1) ) 135135V
EXAMPLE: 2.3
I'(u+1)

In this example we will apply the form D™%t* = tU*, on the result

I'(u+v+1)
previous four cases, in example (2) respectively then we getting f(t) as follows
Fist case

-3y, 192 5 192 1"(2+1) 43
D72 sﬁtz 15\f( ( 45 +1)>t2 :
_ 192 F() _ 192 (15Vm\ 4 4_
T isvm (r(s)) 15\/‘( 192 )t ==

APPLICATIONS

In this section we presenand fractional integral, in order to comprehension
the Riemann the power function.

EXAMPLE: 2.1

Suppose that f(t) = t* = k, and k is constant when we apply the form

—a _ T+ | yta _
D) = e o 6> 0> —1

we will obtian

—-a — a
f©) = [‘(a+1)
EXAMPLE: 2.2
Suppose that f(t) =t* when n—1<a<n,p>n—1,peR t>
( aisorder differentiation).Four cases are consider, namely f
derivative of the functions t*t5,t® and t” le., p=4, p=5, p=6,

p = 7, respectively, by applying the form

a _ e+
bef() = I(p-a+1)

P«

We, will obtain
The first case If p = 4, and a = %

D3apt = LG+D 4_%_ 4! ; 192 ;
ra—3+1) rQ 15V

The second case. Whenp = 5and a = ;

3 7 5
D¥at5 = r(5+1) 5_525_‘; 7 1920 2
r(s— —+1) rG) 105V

The third case: If p = 6, and a = i Than

Second case

D3/, 1920 t; _ 1920 < T(%“))) t;+%

105vVT 105V F(%+§+1
1920 (F( )) s _ 1920 (105\/5) £ = 15 = 1)
105V “I'(6) ~ 105V \ 1920
The third case
D1/, 46080 1 46080 [ TGG+D) e
10395V 10395V \rG+2+1)

46080 (1"(%)) £6 — 46080 (10395#‘) —f(t)

10395V \ T'(7) - 103951/— 46080

The fourth case
13
_ 13 r(=+1 13 1
D 1/, 465120 tz = 465120 1(32:) 2t
(B43+1)

135135V 135135vT

465120 (135135VT

= 135135&( 465120 )t7 t'= £

CONCLUSIONS

Fractional Calculus was formulated in 1695, shortly after the
development of classical calculus. The earliest systematic studies were
attributed to Liouville, Riemann, Leibniz, etc. For a long time,
fractional calculus has been regarded as a pure mathematical realm
without real applications. But, in recent decades, such a state of affairs
has been changed. It has been found that fractional calculus can be
useful and even powerful, and an outline of the simple history about
fractional calculus, especially with applications, can be found in
Machadoetal. .

Now, fractional calculus and its applications is undergoing rapid
developments with more and more convincing applications in the real
world.

The use of fractional order derivatives is nowadays widespread in
many fields. Indeed, the Possibility to use any real order improves the
modelling of several phenomena in physics, engineering and many
application areas.

The subject of fractional differential equations is gaining much
importance and attention. The so-called fractional differential
equations are specified by generalizing the standard integer order
derivative to arbitrary order. Fractional differential equations (FDEs)
involve fractional derivatives of the form (d*/dx"), which are defined
for >0, where o is not necessarily an integer. They are generalizations
of the ordinary differential equations to a random (non-integer) order.
They have attracted considerable interest due to their ability to model
complex phenomena. Due to the effective memory function of
fractional derivative, fractional differential equations have been
widely used to describe many physical phenomena such as flow in
porous media and in fluid dynamic traffic model. For more interesting
theory results and scientific applications of fractional differential
equations, we cite the monographs of Diethelm , Kilbas et al. , Hilfer,
Miller and Ross , Podlubny , Zhou and the references therein.
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