RISK FACTORS OF NON COMMUNICABLE DISEASES (NCDS) AMONG MEDICAL PROFESSIONALS: A CROSS-SECTIONAL STUDY IN A TERTIARY HEALTH CARE INSTITUTION, KOLKATA

Community Medicine

Dr Sukesh Das

Assistant Professor, Department of Community Medicine, College of Medicine and Sagore Dutta Hospital, Kamarhati, Kolkata-700058

Dr Nivedita Das * Associate Professor, Department of Community Medicine, College of Medicine and Sagore Dutta Hospital, Kamarhati, Kolkata-700058 *Corresponding Author

ABSTRACT

Introduction: There is growing burden of Non communicable diseases (NCDs) and its risk factors globally especially in developing countries like India. Medical professionals are vulnerable for the presence of such risk factors and consequently NCDs.
Objectives: To assess the prevalence of risk factors for NCDs among medical professionals of a tertiary health care institution, Kolkata.
Methods: A cross-sectional study was conducted among 72 doctors of a Government Medical College, West Bengal. A self-administered questionnaire was used to collect data and measurements viz. Weight, Height, Waist Circumference and BP were taken.
Results: About one fifth of the study subjects were current smokers. More than one fourth(26.4\%) study subjects were current alcohol drinker. More than half (61.1%) of the physicians indulged in physical activity below recommended level. More than nine-tenth had unhealthy diet. Less than one-third(30.5%) of the physicians had normal blood pressure, 16.7% were hypertensive and 52.8% were pre-hypertensive. Alarmingly, fourfifth of the study subjects were overweight or obese; 73.6% were obese. And almost half of them (45.8%) had central obesity - significantly more among female faculties $(\mathrm{p}=.00)$. One-fifth of the physicians reported as diabetic.
Conclusion: Risk factors for NCDs were present among the doctors in alarming proportions.

KEYWORDS

Non communicable diseases (NCDs), Physicians, Risk factors, STEPS

INTRODUCTION

Non communicable diseases (NCDs) are increasing among in both developed and developing countries.Now-a-days, NCDs i.e. cardio vascular diseases, cancers, diabetes mellitus, chronic obstructive pulmonary diseases, mental disorders etc are global public health priority. NCDs kill 41 million people each year equivalent to 71% of all deaths globally.[1] Cardiovascular diseases,cancer, respiratory diseases and diabetes account for 32.4 million i.e. around 80% of total deaths due to NCDs.[1] Each year 15 million people die from a NCD between the ages of 30 and 69 years; over 85% of these premature deaths occur in low and middle income countries.[1] It has been projected that by the year 2020, NCDs are expected to account for 73% of deaths and 60% of the global disease burden.[2] India is experiencing a rapid transition with a rising burden of NCDs causing significant morbidity and mortality, both in urban and rural population with considerable loss in potentially productive years. According to WHO, around 63% of deaths in India in 2016 were attributed to NCDs. [3]

The prevalence of several behavioral risk factors for NCDs viz. physical inactivity, addiction to tobacco and alcohol, unhealthy diet, stress etc is showing an upward trend in recent years.Along with these, metabolic risk factors viz. raised blood pressure, overweight and obesity, increased cholesterol level are also playing aggravating role in the several NCDs and their consequences including premature death.Physical inactivity is the fourth leading risk factor of early death in the world.[4]Globally, 23% of adults and 81% of adolescents do not meet the WHO global recommendations on physical activity.[5]Alcohol is responsible for more than 5.3% of all deaths worldwide i.e. around 3 million a year.[6] And tobacco accounts for over 7.2 million deaths every year.[7] According to WHO, core risk factors (smoking, alcohol, unhealthy diet and physical inactivity) have the greatest impact on NCD mortality and morbidity and there is evidence that their modification is possible and effective in primary prevention in both developed and developing countries.[2]

Medical professionals are vulnerable group for NCDs because of their work pressure, stress, long working hours,sedentary lifestyle and others. With this backdrop and the fact that not many studies have been done among medical professionals on risk factors of NCDs in India especially West Bengal, this study was conducted to assess the prevalence of risk factors of NCDs among physicians of a tertiary health care institution, Kolkata.

Materials and methods:

Study Type: Observational analytical study
Study Design: Cross-sectional

Study Setting: College of Medicine and Sagore Dutta Hospital, Kamarhati

Study Population: Doctors in the departments of Phase I, Phase II and Phase IIIa of MBBS curriculum of this tertiary health care institution.

Exclusion criteria: Those faculties were excluded who refused to give informed consent and were on leave during the period of data collection.

Study duration: Two months.
Study period: 19.11.2018 to 18.01.2019.

Sample Design: Complete enumeration

Sample size: Out of the total 92 doctors of the departments accessed, 15 refused to give consent \& 5 were on leave during the period of data collection. So total study subjects for the study were $92--(15+5)=72$.

Operational definitions:

1.Classification of Blood Pressure(JNC 7): [9]

Normal(SBP $<120 \&$ DBP $<80 \mathrm{~mm} \mathrm{Hg}$);Pre-hypertension(SBP 120139 or DBP $80-89 \mathrm{~mm} \mathrm{Hg}) ;$ Hypertension($\mathrm{SBP}=>140$ or $\mathrm{DBP}=>90$ mmHg)
2.Classification of BMI: [10]

Normal(18.5-22.9);Overweight(23-24.9);Obese($=>25$)
3.Abdominal obesity:[11]

Waist circumference - Male $=>90 \mathrm{~cm} ;$ Female $=>80 \mathrm{~cm}$
4. Recommended physical activity: [12]

At least $150 \mathrm{~min} / \mathrm{wk}$ of moderate activity or $75 \mathrm{~min} / \mathrm{wk}$ of vigorous activity or 600 MET-Min
5. Current smoker: smoked in last 30 days
6.Current drinker: drank in last 30 days

Study Tools:

1. A pre-tested, structured questionnaire based on WHO STEPS questionnaire for risk factors of NCDs.[8]
2. Stadiometer for measurement of height
3. Sphygmomanometer.
4. Weighing machine (Bathroom scale)
5. Stethoscope.

Study procedure: Written informed consent was taken from the study participants. Interview of the study subjects was taken with selfadministered questionnaire. Anthropometric measurements i.e. Height, Weight, Waist circumference as well as Blood pressure of the study participants were taken.

Ethical clearance: Before conducting the study, approval from the Institutional Ethics Committee was taken.Apart from that, written informed consent was taken from each of the study participants.

Data Analysis: Data was entered in Excel Spreadsheet, then analyzed using SPSS software version 20.0

RESULTS:

Among the study subjects 63.9% were male, the rest were female and 41.7% were in $26-35$ years age-group while only 13.9% were of 56 years or more.

About one fifth of the faculties were current smokers, more among male compared to female(26.1% vs 7.7% respectively).Among the smokers 85.7% were daily smokers. More than one fourth(26.4%) study subjects were current alcohol drinker, more among male. More than half (61.1%) of the faculties indulged in physical activity below recommended level i.e. less than 600 MET-minutes/Week-similar in both male and female. More than nine-tenth of the faculties had unhealthy diet i.e. less than 5 servings of fruits and/or vegetables/day and more than half (55.5\%) take salt at more than recommended level. Less than one-third(30.5%) of the faculties had normal blood pressure, 16.7% were hypertensive and 52.8% were pre-hypertensive. Alarmingly, four-fifth of the study subjects were overweight or obese; 73.6% were obese - more among female than male doctors(61.5% vs 52.2%). And almost half of them (45.8%) had central obesitysignificantly more among female faculties($\mathrm{p}=.00$). One-fifth of the faculties reported themselves as diabetic.

DISCUSSION:

In the current study 19.4% of the study subjects were smokers, compared to $1-15 \%$ in other studies while 25% were alcohol drinkers compared to $3-36 \%$ in other studies.[13-17]And 61.1% were physically inactive i.e. physical activity less than 600 MET min/wk in the current study similar to other studies which reported $60-77 \%$ doctors as physically inactive.[14-17]The study from Mangalore reported 20% of low physical activity, though.[13] Mean physical activity in the current study was $680.6 \mathrm{MET} \mathrm{min} / \mathrm{wk}$, compared to much better scenario(1227.2 MET $\mathrm{min} / \mathrm{wk}$) in the above mentioned study.[13] Only 7% of the study subjects take fruits/vegetables as per recommendation which is consistent with the study from Mangalore. [13] Other studies also reported inadequate fruits/vegetables intake among physicians.[14,15,17]In the present study more than half
doctors(55.5\%) take salt more than recommended while other studies also reported excess salt intake in among physicians in varying range.[12-14]

In the current study, 81.9% were overweight or obese (73.5% obese), other studies reported $50-80 \%$ in this regard.[13-17]Using South East Asian classification of BMI might be one factor for higher prevalence of overweight/obesity in this study. Mean BMI in the current study was 28.4(11.0), higher than other studies.[13,14,17] Central obesity among the doctors was 45.8% in this study, significantly more among female than male $(\mathrm{p}=.00)$; other studies reported in the range of 33$60 \%$.[13,14,16]In the present study, 16.7% were hypertensive and 52.8% were pre-hypertensive. Other studies reported prevalence of hypertension in the range of $2-22 \%$. $[13,14,16,17]$ Mean SBP \& DBP were 123.4(13.1) and 79.7(8.1) respectively in this study, which were consistent with studies from Mangalore and Nigeria.[13,14]In this study one-fifth reported as diabetic, while other studies reported 5$15 \%$ as diabetic.[13,16,17]

CONCLUSION:

Presence of risk factors for NCDs were fairly common among the doctors who are supposed to be aware of their adverse consequences. Health promotion programmes in the institutions would play significant role to incorporate healthy lifestyle among the health personnel.

Table 1: Distribution of faculties according to socio-demographic profile. $\mathrm{n}=72$

Socio-demographic characteristics	Frequency	Percentage
Age group(Years)	30	
$26-35$	18	41.7
$36-45$	14	25.0
$46-55$	10	19.4
$56-65$	46	
Gender	26	63.9
Male		36.1
Female	47	
Religion	25	65.3
Hindu		34.7
Muslim	4	
Residence	68	5.6
Rural	51	94.4
Urban	21	70.8
Type of family	62	29.2
Nuclear	8	
Joint	2	86.1
Marital status	11.1	
Married	2.8	
Unmarried		
Divorced/separated		

Table 2: Distribution of study subjects according to different risk factors of NCDs. n=72

Risk factors		Male (\%)	Female(\%)	Total (\%)	Chi square test p
	1.Tobacco use Current Smokers Non-smokers	$\begin{array}{\|l} 12(26.1) \\ 34(73.9) \\ \hline \end{array}$	$\begin{array}{\|l} 2(7.7) \\ 24(92.3) \\ \hline \end{array}$	$\begin{aligned} & 14(19.4) \\ & 58(80.6) \\ & \hline \end{aligned}$	$\begin{array}{\|l} .11 \\ \hline .069 \\ \hline \end{array}$
	1.a.Smoked daily in last 30 days Yes No	$\begin{array}{\|l} 10(83.3) \\ 2(6.7) \\ \hline \end{array}$	$\begin{aligned} & 2(100.0) \\ & 0(0.0) \\ & \hline \end{aligned}$	$\begin{array}{\|l} 12(85.7) \\ 2(14.3) \\ \hline \end{array}$	--
	1.b.Current Smokeless tobacco user Yes No	$\begin{array}{\|l\|} \hline 4(8.7) \\ 42(91.3) \\ \hline \end{array}$	$\begin{aligned} & 2(7.7) \\ & 24(92.3) \end{aligned}$	$\begin{aligned} & 6(8.3) \\ & 66(91.7) \\ & \hline \end{aligned}$	--
	2.Current alcohol drinker Yes No	$\begin{array}{\|l} 16(34.8) \\ 30(65.2) \\ \hline \end{array}$	$\begin{array}{\|l} \hline 3(11.5) \\ 23(88.5) \\ \hline \end{array}$	$\begin{array}{\|l} 19(26.4) \\ 53(73.6) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline .06 \\ \hline \end{array}$
	2.a.Frequency of alcohol intake Daily Weekly Monthly	$\begin{array}{\|l} 0 \\ 4 / 72(5.5) \\ 12 / 72(16.7) \\ \hline \end{array}$	$\begin{aligned} & 2 / 72(2.8) \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{\|l} \hline 2 / 72(2.8) \\ 4 / 72(5.6) \\ 12 / 72(16.7) \\ \hline \end{array}$	--
	$\begin{aligned} & \hline \text { 3.Physical inactivity } \\ & \text { Yes(<600 MET-minutes /week) } \\ & \text { No(}<600 \text { MET-minutes /week) } \\ & \hline \end{aligned}$	$\begin{array}{\|l} 28(60.9) \\ 18(39.1) \\ \hline \end{array}$	$\begin{aligned} & 16(61.5) \\ & 10(38.5) \\ & \hline \end{aligned}$	$\begin{array}{\|l} 44(61.1) \\ 28(38.9) \\ \hline \end{array}$	95
	4.Unhealthy diet < 5 servings of fruits and/or vegetables/day Yes No	$\begin{aligned} & 43(93.5) \\ & 3(6.5) \end{aligned}$	$\begin{aligned} & 24(92.3) \\ & 2(7.7) \end{aligned}$	$\begin{aligned} & 67(93.1)) \\ & 5(6.9) \end{aligned}$	1.0

	$\begin{aligned} & \text { 4.a.Daily intake of salt } \\ & >5 \mathrm{gm} / \text { day } \\ & <=5 \mathrm{gm} / \text { day } \\ & \hline \end{aligned}$	$\begin{aligned} & 24(52.2) \\ & 22(47.8) \\ & \hline \end{aligned}$	$\begin{aligned} & 16(61.5) \\ & 10(38.5) \\ & \hline \end{aligned}$	$\begin{aligned} & 40(55.5) \\ & 32(44.5) \\ & \hline \end{aligned}$. 44
		$\begin{array}{\|l\|} \hline 8(17.4) \\ 38(82.6) \\ 22 / 46(47.8) \\ 16 / 46(34.8) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 4(15.4) \\ 22(84.6) \\ 16 / 26(61.5) \\ 6 / 26(23.1) \\ \hline \end{array}$	$\begin{array}{\|l} \hline 12(16.7) \\ 60(83.3) \\ 38(52.8) \\ 22(30.5) \\ \hline \end{array}$	1.0
	2.Overweight/obesity BMI Higher than normal $(=>23.0)$ i.Overweight(23-24.9) ii.Obese ($=>25$) Normal(18.5-22.9) 2.a.Waist-circumference Higher than normal $(\mathrm{M}=>90 \mathrm{~cm} ; \mathrm{F}=>80 \mathrm{~cm})^{\wedge \wedge}$ Normal ($\mathrm{M}<90 \mathrm{~cm} ; \mathrm{F}<80 \mathrm{~cm}$)	$\begin{array}{\|l} 35(76.1) \\ 11 / 46(23.9) \\ 24 / 46(52.2) \\ 11(23.9) \\ 14(30.4) \\ 32(69.6) \\ \hline \end{array}$	$\begin{array}{\|l} 24(92.3) \\ 8 / 26(30.7) \\ 16 / 26(61.5) \\ 2(7.7) \\ 19(73.1) \\ 7(26.9) \\ \hline \end{array}$	$\begin{aligned} & 59(81.9) \\ & 19(26.4) \\ & 40(73.5) \\ & 13(18.1) \\ & 33(45.8) \\ & 39(54.2) \\ & \hline \end{aligned}$	$.16$ $.00$
	3.Raised blood glucose ($\mathrm{n}=66$)** Diabetic Non-diabetic	$\begin{array}{\|l} 8(19.1) \\ 34(80.9) \\ \hline \end{array}$	$\begin{array}{\|l} 5(20.8) \\ 19(79.2) \\ \hline \end{array}$	$\begin{aligned} & 13(19.7) \\ & 53(80.3) \\ & \hline \end{aligned}$. 86

$\mathrm{M}=$ male, $\mathrm{F}=$ female
${ }^{\wedge \wedge}$ Substantially increased risk:(Waist Circumference $-\mathrm{M}>102 \mathrm{~cm}$; F $>88 \mathrm{~cm})=12$, female $=10$, male $=2 *$ Known hypertensives and under medication: 10 faculties **6 faculties never measured blood sugar

Table 3: Average measurements i.e. Mean(Standard Deviation) of different parameters of the study subjects. $n=72$

Characteristics	Male Mean(SD)	Female Mean(SD)	Total Mean(SD)
No of servings of fruits and/or vegetables/day	$1.2(.6)$	$1.3(.5)$	$1.3(.5)$
Intake of salt/day(mg)	$5.8(.9)$	$7.1(.8)$	$6.2(.7)$
Physical activity (MET- minutes /week)	$812.2(854.6)$	$447.7(623.8)$	$680.6(789.9)$
BMI(Kg/M2)	$28.8(13.5)$	$27.7(4.0)$	$28.4(11.0)$
Waist circumference(Cm)	$89.9(7.6)$	$92.5(7.9)$	$90.8(7.7)$
SBP(mm Hg)	$125.6(14.8)$	$119.5(8.8)$	$123.4(13.1)$
DBP(mm Hg)	$79.7(8.5)$	$79.7(7.9)$	$79.7(8.1)$
Pulse Rate/minute	$79.7(8.0)$	$78.9(6.6)$	$79.4(7.4)$

$\mathrm{SD}=$ Standard Deviation

REFERENCES

1. WHO.Noncommunicable diseases.Key facts[Internet].[cited 2019 May 12].Available from:https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases
2. WHO. STEPS: A framework for Surveillance. Noncommunicable Diseases and Mental Health World Health Organization[Internet]. 2003 Dec[cited 2019 July 23].Available from: https://www.who.int/ncd_surveillance/en/steps_framework_dec03.pdf
3. WHO.Noncommunicable diseases and mental health[Internet]. 2018 [cited 2019 Sept 10].Available from: https://www.who.int/nmh/countries/2018/ind_en.pdf?ua=1
4. WHO. Global Strategy on Diet, Physical Activity and Health[Internet].[cited 2019 Jan 20].Available from:https://www.who.int/dietphysicalactivity/pa/en/
5. WHO. Noncommunicable diseases and their risk factors[Internet].[cited 2019 Dec 05].Available from:https://www.who.int/ncds/prevention/physical-activity/inactivity-global-health-problem/en/
6. WHO.Global status report on alcohol and health[Internet].2018[cited 2019 Jun 25].Available from: https://apps.who.int/iris/ bitstream/handle /10665 /274603 /9789241565639-eng.pdf?ua=1
7. GBD 2015 Risk Factors Collaborators. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet, 2016; 388(10053):1659-1724
8. WHO STEPS Instrument (Core \& Expanded): The WHO STEP wise approach to Chronic diseases risk factor surveillance (STEPS)[Internet].[cited 2018 Dec 15].Available from: https:// www. who. int/ ncds/ surveillance/ steps/ instrument/ STEPS_Instrument_V3.2.pdf
9. Bethes $\bar{d} a$ (MD): National Heart, Lung, and Blood Institute (US).The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure[Internet]. National Heart, Lung, and Blood Institute, US.National High Blood Pressure Education Program.; 2004 Aug.[cited 2019 Jan 18].Available from: https://www.ncbi.nlm.nih.gov/books/NBK9630/
10. WHO.Western Pacific Region.The Asia-Pacific perspective: Redefining obesity and its treatment[Internet]. 2000 [cited 2018 Dec 19].Available from: http://www. wpro.who. int/ nutrition/documents/docs/Redefiningobesity.pdf
11. Misra A, Chowbey P, Makkar BM et al. Consensus statement for diagnosis of obesity, abdominal obesity and metabolic syndrome for Asian Indians and recommendations for physical activity, medical and surgical management. http://www. japi. org/february_2009/R-1.html Vol 57
12. Surveillance and Population-Based Prevention. Prevention of Noncommunicable Diseases Department. World Health Organization. Global Physical Activity Questionnaire (GPAQ) Analysis Guide https:// www. who. int/ ncds/ surveillance/ steps/resources/GPAQ_Analysis_Guide.pdf
13. Gandhi H ,Vaishali K , Prem V et al. A survey on physical activity and Noncommunicable Disease risk factors among Physicians in tertiary care hospitals,Mangalore.National journal of community medicine 2012;3(1)
14. Ambakederemo TE, Chikezie EU. Assessment of some traditional cardiovascular risk factors in medical doctors in Southern Nigeria.Vascular Health and Risk Management 2018:14
15. AL-Daboony SJ. Knowledge, Attitude and Practices towards Noncommunicable Disease Risk Factors among Medical Staff. Global Journal of Medical Research: F Diseases 2016;16(3)
16. Kiran PK, Anga VS. A study on prevalence of risk factors for non-communicable diseases among allopathic doctors of Vijayawada city, Andhra Pradesh. Int J Community Med Public Health 2019;6:3508-19.
17. Sharma S, Anand T, Kishore J, Dey BK, Ingle GK. Prevalence of modifiable and nonmodifiable risk factors and lifestyle disorders among health care professionals. Astrocyte 2014;1:178-85
