Shorouk Morshdy, Mohamed Adel, Abeer F. Mostafa, Hanaa Ahmed Hassan Abd Elmoneim


Abscisic acid (ABA) is emerging as a new important player in glucose homeostasis. Here, we study its effect on gastric motility in normal and diabetic rats. Forty eight Sprague-Dawley  rats  were divided into two groups: group I, (Control, n=24), which was subdivided into: subgroup (I a) to determine the effect of ABA in  different doses,  after adding autonomic drugs (I b), after adding Ca+2 channel blockers (I c), after adding L-NAME (I d), after adding  Na+ channel blocker (I e), after adding PPAR -γ antagonist (I f), and group II (Diabetic, n=24), which was subdivided into: subgroup (II a)  to determine the effect of ABA in different doses, after adding autonomic drugs (II b), after adding Ca+2 channel blockers (II c), after adding L-NAME (II d), after adding  Na+ channel blocker (II e), after adding PPAR -γ antagonist (II f). ABA increased basal gastric motility with higher response in diabetic rats with increased expression of LANCL2 receptors. Also, ABA had excitatory effect after blocking of autonomic receptors. Ca2+ channel blockers diminished the excitatory effect of ABA. Also, ABA led to a significant excitatory effect after adding L-NAME. ABA increased gastric motility after adding lidocaine. The excitatory effect of ABA can be abolished after adding PPAR –γ antagonist.


Abscisic acid; LANCL2 receptors; gastric motility

Full Text:



Hong, J. H., Seah, S. W. & Xu, J. 2013. The root of ABA action in environmental stress response. Plant cell reports, 32(7), 971-983.

Magnone, M., Ameri, P., Salis, A., Andraghetti, G., Emionite, L., Murialdo, G., De Flora, A. & Zocchi, E. 2015. Microgram amounts of abscisic acid in fruit extracts improve glucose tolerance and reduce insulinemia in rats and in humans. The FASEB Journal, 29(12), 4783-4793.

Bruzzone, S., Moreschi, I., Usai, C., Guida, L., Damonte, G., Salis, A., Scarfi, S., Millo, E., De Flora, A. & Zocchi, E. 2007. Abscisic acid is an endogenous cytokine in human granulocytes with cyclic ADP-ribose as second messenger. Proceedings of the National Academy of Sciences, 104(14), 5759-5764.

Muoio, D. M. & Newgard, C. B. 2008. Molecular and metabolic mechanisms of insulin resistance and β-cell failure in type 2 diabetes. Nature reviews Molecular cell biology, 9(3), 193.

Klingler, J. P., Batelli, G. & Zhu, J.-K. 2010. ABA receptors: the START of a new paradigm in phytohormone signalling. Journal of experimental botany, 61(12), 3199-3210.

Lu, P., Hontecillas, R., W Philipson, C. & Bassaganya-Riera, J. 2014. Lanthionine synthetase component C-like protein 2: a new drug target for inflammatory diseases and diabetes. Current drug targets, 15(6), 565-572.

Sanders, K. M., Koh, S. D., Ro, S. & Ward, S. M. 2012. Regulation of gastrointestinal motility—insights from smooth muscle biology. Nature reviews Gastroenterology & hepatology, 9(11), 633.

Guri, A. J., Hontecillas, R., Ferrer, G., Casagran, O., Wankhade, U., Noble, A. M., Eizirik, D. L., Ortis, F., Cnop, M. & Liu, D. 2008. Loss of PPARγ in immune cells impairs the ability of abscisic acid to improve insulin sensitivity by suppressing monocyte chemoattractant protein-1 expression and macrophage infiltration into white adipose tissue. The Journal of nutritional biochemistry, 19(4), 216-228.

Guri, A. J., Evans, N. P., Hontecillas, R. & Bassaganya-Riera, J. 2011. T cell PPARγ is required for the anti-inflammatory efficacy of abscisic acid against experimental IBD. The Journal of nutritional biochemistry, 22(9), 812-819.

Hong, J. H., Seah, S. W. & Xu, J. 2013. The root of ABA action in environmental stress response. Plant cell reports, 32(7), 971-983.

Sheth, D. B. 2012. Investigation into Pharmacological Profile and Mechanism of Action of Abscisic Acid with Reference to its Possible Therapeutic Usefulness. Saurashtra University.

Minorsky, P. V. 2002. News from the Archives. Plant physiology, 128(3), 788.

Li, H.-H., Hao, R.-L., Wu, S.-S., Guo, P.-C., Chen, C.-J., Pan, L.-P. & Ni, H. 2011. Occurrence, function and potential medicinal applications of the phytohormone abscisic acid in animals and humans. Biochemical pharmacology, 82(7), 701-712.

Alikhani, V., Keshavarzi, Z., Hadjzadeh, M. A. R. & Karimi, S. 2015. The effects of melatonin on gastric parameters following diabetes induction in male rats. Acta Endocrinologica (1841-0987), 11(2).

Forrest, A., Molleman, A. & Parsons, M. 2005. The responses to manipulation of extracellular and intracellular calcium are altered in the streptozotocin-diabetic rat colon and ileum. European journal of pharmacology, 509(1), 77-83.

Barham, D. & Trinder, P. 1972. An improved colour reagent for the determination of blood glucose by the oxidase system. Analyst, 97(1151), 142-145.

Kim, S. J., Park, J. H., Song, D. K., Park, K. S., Lee, J. E., Kim, E. S., Cho, K. B., Jang, B. K., Chung, W. J. & Hwang, J. S. 2011. Alterations of colonic contractility in long-term diabetic rat model. Journal of neurogastroenterology and motility, 17(4), 372.

Ipavec, V., Martire, M., Barrese, V., Taglialatela, M. & Currò, D. 2011. KV7 channels regulate muscle tone and nonadrenergic noncholinergic relaxation of the rat gastric fundus. Pharmacological research, 64(4), 397-409.

Roth, S., Schofield, B. & Yates, J. 1979. Effects of atropine on secretion and motility in isolated gastric mucosa and attached muscularis externa from ferret and cat. The Journal of physiology, 292(1), 351-361.

Nocerino, E., Izzo, A. A., Borrelli, F., Capasso, F., Capasso, R., Pinto, A., Sautebin, L. & Mascolo, N. 2002. Relaxant effect of capsazepine in the isolated rat ileum. Naunyn-Schmiedeberg's archives of pharmacology, 365(3), 187-192.

Bianchetti, A. & Manara, L. 1990. In vitro inhibition of intestinal motility by phenylethanolaminotetralines: evidence of atypical β‐adrenoceptors in rat colon. British journal of pharmacology, 100(4), 831-839.

Borrelli, F., Capasso, F., Capasso, R., Ascione, V., Aviello, G., Longo, R. & Izzo, A. A. 2006. Effect of Boswellia serrata on intestinal motility in rodents: inhibition of diarrhoea without constipation. British journal of pharmacology, 148(4), 553-560.

Elimadi, A., Bouillot, L., Sapena, R., Tillement, J.-P. & Morin, D. 1998. Dose-related inversion of cinnarizine and flunarizine effects on mitochondrial permeability transition. European journal of pharmacology, 348(1), 115-121.

Chetty, N., Irving, H. R. & Coupar, I. M. 2006. Activation of 5‐HT3 receptors in the rat and mouse intestinal tract: a comparative study. British journal of pharmacology, 148(7), 1012-1021.

Gil, V., Parsons, S., Gallego, D., Huizinga, J. & Jimenez, M. 2013. Effects of hydrogen sulphide on motility patterns in the rat colon. British journal of pharmacology, 169(1), 34-50.

Silswal, N., Parelkar, N. K., Wacker, M. J., Badr, M. & Andresen, J. 2012. PPARα-independent arterial smooth muscle relaxant effects of PPARα agonists. PPAR research, 2012.

Brock, C., Søfteland, E., Gunterberg, V., Frøkjær, J. B., Lelic, D., Brock, B., Dimcevski, G., Gregersen, H., Simrén, M. & Drewes, A. M. 2013. Diabetic autonomic neuropathy affects symptom generation and brain-gut axis. Diabetes Care, 36(11), 3698-3705.

Yarandi, S. S. & Srinivasan, S. 2014. Diabetic gastrointestinal motility disorders and the role of enteric nervous system: current status and future directions. Neurogastroenterology & Motility, 26(5), 611-624.

Muangchan, N., Kooptiwut, S., Tapechum, S., Akarasereenont, P., Vongsopanagul, N., Pongwattanapakin, K. & Chaikomin, R. 2017. 13C-Acetic Acid Breath Test Monitoring of Gastric Emptying during Disease Progression in Diabetic Rats. Biological and Pharmaceutical Bulletin, 40(9), 1506-1514.

Cichero, E., Fresia, C., Guida, L., Booz, V., Millo, E., Scotti, C., Iamele, L., De Jonge, H., Galante, D. & De Flora, A. 2018. Identification of a high affinity binding site for abscisic acid on human lanthionine synthetase component C-like protein 2. The international journal of biochemistry & cell biology, 97, 52-61.

Zocchi, E., Hontecillas, R., Leber, A., Einerhand, A., Carbo, A., Bruzzone, S., Tubau-Juni, N., Philipson, N., Zoccoli-Rodriguez, V. & Sturla, L. 2017. Abscisic acid: a novel nutraceutical for glycemic control. Frontiers in nutrition, 4, 1

Huddart, H., Smith, R., Langton, P., Hetherington, A. & Mansfield, T. 1986. Is abscisic acid a universally active calcium agonist? New phytologist, 104(2), 161-173.

Samir, S. M. & Mostafa, A. F. 2018. Abscisic acid: a novel uterine stimulator in normal and diabetic rats. Canadian journal of physiology and pharmacology, 96(9), 943-952.

Masters, A., Huddart, H. & Hetherington, A. 1994. Actions of abscisic acid and the analogue SD217595 on calcium mediated activity of rat vas deferens smooth muscle. General pharmacology, 25(3), 481-486.

Lynch, M. 1991. A possible role for abscisic acid analogues as calcium channel blockers in mammalian smooth muscle. General pharmacology, 22(5), 895-901.

Sturla, L., Fresia, C., Guida, L., Bruzzone, S., Scarfì, S., Usai, C., Fruscione, F., Magnone, M., Millo, E. & Basile, G. 2009. LANCL2 is necessary for abscisic acid binding and signaling in human granulocytes and in rat insulinoma cells. Journal of Biological Chemistry, 284(41), 28045-28057.

James, A. N., Ryan, J. P., Crowell, M. D. & Parkman, H. P. 2004. Regional gastric contractility alterations in a diabetic gastroparesis mouse model: effects of cholinergic and serotoninergic stimulation. American Journal of Physiology-Gastrointestinal and Liver Physiology, 287(3), G612-G619.

Altan, M., Yildizoğlu, N. & Öztürk, Y. 1987. Decreased gastro-intestinal responses to certain agonists in streptozotocin-and alloxan-diabetic rats in vitro. Pharmacology, 34(2-3), 143-148.

Min, Y. W., Ko, E.-J., Lee, J.-Y. & Rhee, P.-L. 2018. Impaired neural pathway in gastric muscles of patients with diabetes. Scientific reports, 8(1), 7101.

Mahavadi, S., Sriwai, W., Manion, O., Grider, J. R. & Murthy, K. S. 2017. Diabetes-induced oxidative stress mediates upregulation of RhoA/Rho kinase pathway and hypercontractility of gastric smooth muscle. PloS one, 12(7), e0178574.

Boron, W. & Boulpaep, E. 2003. A cellular and molecular approach. Medical Physiology Elsevier/Saunders), 1300.

Hansen, M. 2003. Neurohumoral control of gastrointestinal motility. Physiological research, 52(1), 1-30.

Liu, L. & Coupar, I. M. 1997. Characterisation of pre-and post-synaptic α-adrenoceptors in modulation of the rat ileum longitudinal and circular muscle activities. Naunyn-Schmiedeberg's archives of pharmacology, 356(2), 248-256.

Bolton, T., Prestwich, S., Zholos, A. & Gordienko, D. 1999. Excitation-contraction coupling in gastrointestinal and other smooth muscles. Annual review of physiology, 61(1), 85-115.

Lincoln, T. M. & Cornwell, T. L. 1993. Intracellular cyclic GMP receptor proteins. The FASEB Journal, 7(2), 328-338.

Hebeiß, K. & Kilbinger, H. 1996. Differential effects of nitric oxide donors on basal and electrically evoked release of acetylcholine from guinea‐pig myenteric neurones. British journal of pharmacology, 118(8), 2073-2078.

Ahn, H. & Karaki, H. 1988. Inhibitory effects of procaine on contraction and calcium movement in vascular and intestinal smooth muscles. British journal of pharmacology, 94(3), 789-796.

Rizzo, A., Spedicato, M., Cosola, C., Minoia, G., Roscino, M., Punzi, S. & Sciorsci, R. 2009. Effects of rosiglitazone, a PPAR‐γ agonist, on the contractility of bovine uterus in vitro. Journal of veterinary pharmacology and therapeutics, 32(6), 548-551.

Bassaganya-Riera, J., Skoneczka, J., Kingston, D., Krishnan, A., Misyak, S., Guri, A., Pereira, A., Carter, A., Minorsky, P. & Tumarkin, R. 2010. Mechanisms of action and medicinal applications of abscisic acid. Current medicinal chemistry, 17(5), 467-478.

Hontecillas, R. & Bassaganya-Riera, J. 2012. Expression of PPAR γ in intestinal epithelial cells is dispensable for the prevention of colitis by dietary abscisic acid. e-SPEN Journal, 7(5), e189-e195.

Guri, A. J., Hontecillas, R., Si, H., Liu, D. & Bassaganya-Riera, J. 2007. Dietary abscisic acid ameliorates glucose tolerance and obesity-related inflammation in db/db mice fed high-fat diets. Clinical Nutrition, 26(1), 107-116.

Guri, A. J., Hontecillas, R. & Bassaganya-Riera, J. 2010. Abscisic acid ameliorates experimental IBD by downregulating cellular adhesion molecule expression and suppressing immune cell infiltration. Clinical Nutrition, 29(6), 824-831.


  • There are currently no refbacks.